If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+64x+16=0
a = -16; b = 64; c = +16;
Δ = b2-4ac
Δ = 642-4·(-16)·16
Δ = 5120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5120}=\sqrt{1024*5}=\sqrt{1024}*\sqrt{5}=32\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-32\sqrt{5}}{2*-16}=\frac{-64-32\sqrt{5}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+32\sqrt{5}}{2*-16}=\frac{-64+32\sqrt{5}}{-32} $
| 2(w+8)+5w=2 | | -7=x+(-4) | | 4(y-6)+5y=12 | | 10(x-7)^2-440=0 | | 9X4-40x2+16=0 | | 6c=47/50 | | X^2+4c+24=0 | | 2.3=7.6+y | | 6x/7=2.4 | | 9c2=24c | | 200m-100m+53,075=56,375-175 | | 1=-x^2+3 | | 20x+49=-11 | | 2=-x^2+3 | | 105-2w=110+3w | | 2=2x^2+1 | | 125x^+1=5x^+7 | | 1.4(3x+0.5)=2x+0.9 | | 8*14g= | | 0=-x^2=3 | | 20/120=93/x | | 0.9x+0.3=6.6 | | -2*17m= | | (4x-7)-(2x-2)=7(-2x+2) | | x÷5=14 | | 5(n-3)+2=3(n+1) | | n-26=-26 | | 20.9-2x+8=0.2x-5.2 | | -8x+6=62 | | 8x+4(4x-3)=4(6x+4)-4x | | -7-(3-2x)=10 | | 8x+4(4x-3=4(6x+4)-4x |